

PROJECT REPORT

(6 weeks Project Training)

Function Fault Injector

Submitted by

Atishay Jain

Roll No: 10783017

Under the Guidance of

Mr. Satheesh Konidala,
Manager (T), Unified Communications,

Microsoft IDC, Hyderabad.

Department Of Computer Science and Engineering
THAPAR UNIVERSITY, PATIALA

(Deemed University)

i

Jun-July 2008
ANNEXURE – VIII

DECLARATION

I hereby declare that the project work entitled “Function Fault Injector” is an authentic record of

my own work carried out at Microsoft IDC, Gachibowli, Hyderabad as requirements of six

weeks project term for the award of degree of B.E. (Computer Science & Engineering), Thapar

University, Patiala, under the guidance of Mr. Satheesh Konidala, during 2nd June to 25th July,

2008.

ATISHAY JAIN
10783017

Date:

ii

ACKNOWLEDGEMENT

For the project to come out up to the standards, I would like to thank first of all my

mentor, Mr. Premkumar Srinivasan, whose knowledge of the subject and guidance in the right

direction helped to me not lose direction into the vast subject matter and be able to complete the

project in the stipulated time. I would also like to thank my manager, Mr. Satheesh for providing

me with the essential support and analyzing my work at regular intervals so that none of the

requirements are left out. Besides these I would also like to thank my fellow interns for the

support they provided, my teachers for guiding me to the company, my parents to allow me to go

and many others, without whose support and cooperation, the project would have remained just a

dream.

iii

CONTENTS

S.No. Topic Page No.

1

Project Summary

1

2 Introduction to the Programming/Development 4

Environment

3

Project

7

4

Design

8

5

Work Details

12

6

Testing

28

7

Results & Conclusions

29

8

References

30

1

PROJECT SUMMARY

Fault Injection – The concept

“Deliberate insertion of upsets (faults or errors) in computer systems to evaluate its

behavior in the presence of faults or validate specific fault tolerance mechanisms in computers.”

By Fault Injection we are testing the fault tolerant mechanisms that prevent the faults from

becoming errors or bugs that cause failure.

Figure 1: Conversion of fault to failure

Fault Injection is basically of two types: Hardware and Software implemented.

In hardware based fault injection, the basic electronic circuit introduces interrupts

during key areas of program execution to analyze its effects whereas if done through

software, this action is performed by altering the logic.

Basic idea of software implemented fault injection (SWIFI) is:

1) Interrupt the target application/system in some way (e.g., by inserting a trap instruction or

by executing the application in trace mode).

2) Execute specific fault injection routine that emulates faults by inserting errors in different

parts of the system (processor registers, memory, etc.).

2

3) Resume the execution of the interrupted program.

4) Collect results on faults manifestations at different levels (system level, application level,

FTM, etc).

Advantages of SWIFI

� Not much affected by the complexity of the target

� Low complexity

� Low cost and development effort

� Reasonably portable

� No physical interferences

Disadvantages of SWIFI

� Do not cover faults in peripheral devices, ASICS, etc

� Limited monitoring capabilities

� Tools have great impact on the target system behavior

Function Fault Injector-The tool

Function Fault Injector (FFI) can be used to inject faults into software at the function

level. By this we can perform various types of tests identifying various error and exception

handlers throughout the module, by changing the return values passed by the functions present in

the other dlls that this function calls. The tool provides facility of not only having alternate return

value passed but also of making the value to be passed under a certain probability such that the

normal function can also be run under the remaining cases. Not only this, it provides features to

fill in an alternate function for the actual function, modify the produced return value by the

called function, call the actual function but after modifying the parameters that were actually

passed to it, all under the control of probabilities so that the fault ratio can be controlled. Besides,

it can also act as the normal shim-generator, where it generates a C file that can be modified at

will and compiled to act as an Application Verifier Shim.

3

Application Verifier (AppVerifier) is a runtime verification tool(freeware) used in testing

applications for compatibility with Microsoft Windows XP/CE. This tool can be used to test for a

wide variety of known compatibility issues while the application is running. It intercepts calls to

system as well as non system functions within external dlls. The function fault injector uses the

Application verifier as the mother software and acts as its component to aid speedy generation of

shims (shims are the dlls the intercepted functions are directed to) for testing.

Also included in the FFI is the facility to save your projects and improve or modify them

later. Directly added is the facility to modify the probabilities where one doesn't need to go back

to the registry to modify them but can directly go to the registry editor and modify the

probabilities stored as registry keys. Built for the purpose of ARMv4I environment testing, but

the generated code can be compiled under any environment including x86, provided that the

build window is available and there is an availability of the application verifier to run the shim.

4

THE PROGRAMMING AND DEVELOPEMNT ENVIRONMENT

The fault injector was designed in C# by the use of the Visual Studio 2005, IDE as the

development environment. The code it called to as a part of the injector is the shimgen.exe file

that was written as a part of the application verifier shim generator in Visual C++ and was kept

as unmodified during the entire project. Apart from these the Microsoft ‘build.exe’ was used to

compile and integrate the generated shims as a part of the Windows CE 6.0 code.

The C# Language

C# (pronounced C Sharp) is a multi-paradigm programming language that encompasses

functional, imperative, generic and object-oriented disciplines. It is developed by Microsoft as

part of the .NET initiative and later approved as a standard by ECMA (ECMA-334) and ISO

(ISO/IEC 23270). Developed around the same time, C# and Java are sister languages with many

of the features being similar and being added to both the languages with a huge impact from the

other one.

Visual Studio IDE

Microsoft Visual Studio is the main Integrated Development Environment (IDE) from

Microsoft. It can be used to develop console and Graphical user interface applications along with

Windows Forms applications, web sites, web applications, and web services in both native code

together with managed code for all platforms supported by Microsoft Windows, Windows

Mobile, .NET Framework, .NET Compact Framework and Microsoft Silverlight.

Visual Studio includes a code editor supporting IntelliSense as well as code refactoring. The

integrated debugger works both as a source-level debugger and a machine-level debugger. Other

built-in tools include a forms designer for building GUI applications, web designer, class

designer, and database schema designer. It allows plug-ins to be added that enhance the

functionality at almost every level - including adding support for source control systems to

adding new toolsets like editors and visual designers for domain-specific languages or toolsets

for other aspects of the software development lifecycle.

5

ARM - the target environment

The ARM architecture (previously, the Advanced RISC Machine, and prior to that Acorn

RISC Machine) is a 32-bit RISC processor architecture developed by ARM Limited that is

widely used in embedded designs. Because of their power saving features, ARM CPUs are

dominant in the mobile electronics market, where low power consumption is a critical design

goal.

Today, the ARM family accounts for approximately 75% of all embedded 32-bit RISC

CPUs, making it one of the most widely used 32-bit architectures. ARM CPUs are found in most

corners of consumer electronics, from portable devices (PDAs, mobile phones, media players,

handheld gaming units, and calculators) to computer peripherals (hard drives, desktop routers).

Windows CE 6.0 supports ARM v4I and above as the machine architecture.

Windows CE-the target OS

Windows CE (also known officially as Windows Embedded Compact post version 6.0 and

sometimes abbreviated WinCE) is Microsoft's operating system for minimalistic computers and

embedded systems. Windows CE is a distinctly different operating system and kernel, rather than

a trimmed-down version of desktop Windows. Figure 2 Windows CE

Windows CE is a modular/componentized operating system that serves as the foundation for

several classes of devices. Some of these modules provide subsets of other components' features,

others which are mutually exclusive, and others

which add additional features to another

component. One can buy a kit (the Platform

Builder) which contains all these components and the

tools with which to develop a custom platform.

6

Platform Builder – the generator of the code to be tested

This programming tool is used for building the platform (Kernel), device drivers (shared source

or custom made) and also the application. This is a one step environment to get the system up

and running. One can also use Platform Builder to export an SDK (software development kit) for

the target microprocessor (SuperH, x86, MIPS, ARM etc.) to be used with another associated

tool set named below.

7

PROJECT

The major features/requirements of the project can be summarized as:

1. Intercept the program flow (via the application verifier) and pass the original function to

the shimmed dll where the following can be applied:

a. Give alternate Return Value.

b. Fill in a stub function, to replace the original one.

c. Change the passed parameters to the original function return the result produced

henceforth.

d. Wait for the original function to complete and modify the output or the return

value after the function has ended its flow.

2. Have probabilities associated with each type of return and also with the original function.

3. Modify the probabilities dynamically, through the windows registry.

4. No injection into the original dll.

5. Can remove the shim from application via just one command.

6. Save and modify the project any time and apply the modified shim by just replacing the

old one.

7. Full flexibility to write any C code and include custom headers.

8. Can also be used for API testing through the ‘modify passed values or parameters’ option.

9. System dlls can be shimmed to produce other types of faults by say restricting the

memory available.

10. A lot of time is saved as the tool automatically generates the code and the support files

which in normal shimming process take much more time.

11. Free form many leaks and flaws present in the original shimgen and hence a good

alternative to produce new shims for other purposes.

12. Leaves the C files as code for any modification as the user wants.

8

DESIGN

The working of the fault injector is based on the working of the application verifier,

which makes registry settings and based on those settings intercepts calls to a specific dll and

passes it onto the shimmed dll. The function fault injector has automated the formation of the

shim, by modifying the application verifier functioning.

These modifications in the shim generation process can be best described by the means of the

two diagrams below:

Figure 3 Shim Generation by Application Verifier

Default Shim Generation

1. User selects the Shimgen UI and identifies the functions to be shimmed. The UI lists all

available unmanaged functions (Made by core C classes and C++ classes which do not

9

have a garbage collector and are a major part of the original windows code) present in the

given dll that can be shimmed, through the use of MSDOS ‘dumpbin/exports’ command.

2. The UI Automatically generates the .bat file to call the old Shimgen which is a command

line tool built in native C++ that actually opens the dll, finds the available debug

information and generates the files for shimming.

3. User then has to manually modify the files and produce the code, which has to compiled

by the WinCE build window, and applied via the Visual Studio shell prompt(Command

Prompt for WinCE) into the application.

Figure 4 Shim Generation assisted by the FFI
Shim Generation assisted by the function fault injector

1. The user selects the dll as above.

2. He goes to the injection menu to select the details of the functions which have to be

shimmed.

3. As he finished, he can save the details to a file for future reuse.

10

4. Then he is opened with the code which has to be compiled in the build window and

applied as earlier.

5. No coding is required as everything is auto generated.

Figure 5 Interception Points
The above diagram is self explanatory as it explains at what parts of the function

call when function A calls the function B, the call is intercepted as well as the names

given to each of the interceptions.

11

User

Data Flow Diagrams

DLL/Fault Details/Saved File

C File to be compiled and applied

Figure 6 Context Level Diagram

Function Fault

(FFI)

� User passes the dll file that has to shimmed, shimming details, or the saved file and is
generated the C file which has to be compiled and applied.

� The passed information is done through the UI that is almost similar to the original
Shimgen UI.

Figure 7 Level 1 DFD

The above DFD clearly describes the four components of the FFI and the interaction between

them as well as the flow of data.

User

Saved
File

Backup Function
Specification

Primitive C file Shimgen.exe

Fault Details

Function
Prototypes

Selected Functions
DLL FFI

Functions Available Shimgen UI
DLL

FFI
Shimgen

core

Available Functions

12

Work Details

Steps involved in getting the project to work:

Step 1: What you actually need?

1. To be able to actually able to use the software, you'll need the build window as well as

the application verifier. Different Versions of the application verifier are available at

Microsoft.com individually or as a part of the the WinCE Test Kit. The one for WinCE

6.0 can be downloaded here. The application verifier has to be strictly of the correct

environment and so has to be the build window. Note that a shim created by the WinCE

6.0 build window will not run on WINCE 5.0 or windows mobile (5.0 & 6.0) which use

WinCE 5.1.

2. Apart from this you will also need the required testing device, visual studio etc.

3. As far as the files are concerned, you’ll need the .dll containing the function, its .pdb and

.lib files. These files should be present in the same directory. Besides that, the regular

files associated with the build window are required for the compilation process.

Step 2: Starting and selecting the functions.

1. Open the Function Fault injector.exe file.

2. Select the (...) button in front of the Original DLL and select the DLL containing the

function that you wish to be shimmed i.e. the function whose return value has to be

changed to apply the fault.

3. Browse to the location of the DLL.

4. You can alternatively type the location in the available text box.

5. Do the same for the Output file. Note that the location of output file should be such that

the build window should be able to select the proper dlls and provide the headers for

compilation.

6. As soon as you select target dll, the list of functions exported by the dll, that can be

shimmed appears in the left hand box. Note that the functions in the list that appear are

only the exported functions that are not a part of any class. You can view all these

functions via dumpbin/exports in the command prompt.

13

7. If a function does not appear in the list it is probably that either the function is inside a

class or not exported by the dll.

8. Select the appropriate functions and click on the add button to add them to the list of

those to be shimmed.

9. You can alternatively add all the functions available by the Add All button.

10. To remove a function not wanted you can select it and click remove all.

11. You can save the project at any stage using the File>Save or pressing the Ctrl+S keys.

12. To filter the list of functions and select the functions imported by only a particular

dll/exe, you can use the imported by button, where you can select the dll or exe and it

will filter out the function by those imported by that file. again to see the list of imports

you can use dumpbin/imports in the command prompt.

13. Alternatively you can apply an API filter to filter out specific functions.

Figure 8 Selecting Functions

14

API Filter
1. Because of the number of functions being too large in the dlls, selecting and reaching to

the correct wanted functions becomes highly difficult.

2. Use the API filter to filter out through the list of functions to search out the function

wanted to search.

Figure 9 API filter

3. Type in any keywords to find them in a function. Note that it is case-sensitive.

4. To filter out functions beginning with a certain set of letters type '^' before the letters. Eg:

^get filters out all the functions starting with the letters get.

Figure 10 Start with get
5. To filter out all the functions ending with a certain set of letters type '$' sign after the

letters. Eg get$ returns all the functions ending with get.

15

Figure 11 Ending with get

Step 3: Generating Shimgen File/moving to function details.

1. To use the Function Fault Injector as an application verifier shim generator press the

Generate Blank shim and Close Button.

2. To use it as the fault injector and to move on to the function details, click on the Fill

Function Details button.

3. It may take some time for some of the files to be generated.

4. Note that you lose the original C file if you had loaded the function at this stage and need

to regenerate to get it back.

5. Once the files are generated, you are automatically transferred to the Fault Injection

specifications Dialog.

Step 4:Filling in the Fault Specifications

1. At this stage you go to the Fault Specification Dialog Box.

2. In the dialog box you are the first function in your list. Here you can specify the details of

the faults to be injected. The various types of details are described as

3. To fill in the values, check the appropriate checkbox, and fill in the probability of the

specific fault. Note that one function can have at time more than one types of faults with

different probabilities.

4. The probabilities can sum up to <=100, as the remaining goes to the original function

being called. They cannot be negative.

5. You are allowed to write a only a valid "C" code in the columns.

16

6. The code should be syntactically correct and should have only 'C' elements. Note that

Boolean does not exist in C and so the return type is 0 for false and 1 for true and we

have to use that even if it says BOOL as the data type.

7. In the alternate return value, you can put only those values that can be returned by the

return statement directly.

8. Only in the alternate return value you can have a value without a semicolon.

9. In all others you will need a semicolon in all the lines.

10. You can use all standard C++ headers or can make your own and add to the project

including it in the include section.

11. The navigation buttons are self explanatory and you can use them to easily navigate

between the functions.

12. You can save your project any time using File>Save or simply pressing the Ctrl+S.

13. You can build the C++ file anytime by File>Build or Ctrl+B.

Alternate Return Value

Alternate Return Value is the value that is supposed to be returned by the function in case

of the probability being the match. Note that the original function is not called when the alternate

value is returned. Also note that the value to be returned can only be which can be put down

directly to the return statement as the program puts it as return <your value>;

This value is the shortest or rather the easiest to implement and among the most effective. For

example say if we are shimming the functions that allocates some resources and returns a pointer

to the resource like the malloc function, if would not be useful to get the resource allocated and

then return, not found. it'll be better if we do not call the actual malloc so as to save resources as

the fault is being generated. There this function can come as handy.

Stub Function

A stub function is an alternative function that is run when the original function had to be

run using the same parameters and returning a value that is passed to the original function.

Coming from the era in stub testing, when the testing is done even before the module is complete

by putting in stubs in the place of incomplete blocks, it has been found that these functions come

out better testing methods than just crudely changing the return value. Also called code mutation,

17

these functions aim at providing variety in the return by using at many times random number

generators to return numbers at random.

In the FFI, you can write the stub function as any other C function whose inputs are given

at the prototype.

You don't need to repeat the prototype or use the function open and close brackets but

have to make sure that the function is correct. A common error faced it writing down code that is

not 'C" compliant. Even though we are passed bool and string, they are the prototypes not

existing in 'C' so you have to use them as what they are in 'C', bools as integers and string as

character pointers. Remember to include the required headers in the bottom most column. You

can return the values using the normal return function.

You will not need to include windows.h & stdlib.h as they are already included.

For example,

In the FFI, you can write the stub function as any other C function whose inputs are given

at the prototype.

You don't need to repeat the prototype or use the function open and close brackets but have to

make sure that the function is correct. A common error faced it writing down code that is not 'C"

compliant. Even though we are passed bool and string, they are the prototypes not existing in 'C'

so you have to use them as what they are in 'C', bools as integers and string as character pointers.

remember to include the required headers in the bottom most column.

For example say if the function prototype is: FLOAT Diff (FLOAT Parameter1, FOAT

Parameter2);

You can write a function as:

int param = (int) Parameter1;

Parameter2+=param;

return Parameter2;

or alternatively we can also write functions like:

return pow(Parameter1,3);

18

But we'll have to include #include<math.h> in the headers section.

Alternate Parameters

This is sort of an API testing technique where instead of totally removing the original function

we use it but by changing the parameters passed to it. We alter the function parameters passed by

the original function and pass it to the called function. This way we are testing the called

function as well as the calling function by returning the output that will be produced when the

modified parameters are passed which will be actually a propagated faults. Minimizing or

removing propagated faults is another necessity in a program and this routine helps us to test

that.

In the FFI, you can write the stub function as any other C function whose inputs are given at the

prototype.

You don't need to repeat the prototype or use the function open and close brackets but have to

make sure that the function is correct. A common error faced it writing down code that is not 'C"

compliant. Even though we are passed bool and string, they are the prototypes not existing in 'C'

so you have to use them as what they are in 'C', bools as integers and and string as character

pointers. remember to include the required headers in the bottom most column. After you have

modified the values, they have to be present in the same variables to be forwarded to the original

function. Also note that since all the data types are not supported by 'C' you might get

compilation errors for some class of data types. Those remain to be some of the limitations of the

tool which will be overcome in the future.

An example of the alternate Parameter Function can be, say if the prototype is FLOAT

Diff(FLOAT Parameter1, FOAT Parameter2);

You can write:

Parameter2=0;

Parameter1-=1;

Modified Return Value

Another alteration possible to the given function is a modified return value. in this case we wait

for the original function's natural execution and come into action as the execution has finished.

After the function has finished executing, we introduce a perturbation function that modifies its

19

value and send to the main program. In this way the fault values can be made dynamic. More so,

if the calling of the function was necessary as it might trigger some other actions, it may prove

out to be the only soln. We can still use it as alternate return by setting the result to the return

value, and we have more choice.

To use this function using FFI, you can write any C code in the given block. Note that the actual

result in present in a variable called result whose data type will be as per the default return type

of the function. You will have to store the value to the result statement itself unless you explicitly

use the return statement. You are still available with the passed parameters and among the rarest

options that you can still use them.

For example say if the function prototype is: FLOAT Diff(FLOAT Parameter1, FOAT

Parameter2);

You can write a function as:

result -=3;

or alternatively we can also write functions like:

result += Parameter1;

or

return Parameter1-result;

The Generated Files

The default generated files contain all the information required to be built and applied by the
application verifier.

Generated C code:

This file contains the shimmed dll, where the user inputs have been plugged in at appropriate

positions. Though I suggest that you use the application UI to modify the contents but

alternatively, you can directly modify the contents present in the file, do bring the desired

changes to the solution. it has the probability generation, application of all classes of the

functions as well as the code to incorporate the registry already written.

Rest of the files is same as generated by the normal shimgen program:

20

DllMain.c

This file contains the implementation for DllMain. Customize this to perform any initialization

or termination tasks required.

OptionsDlg.c

To add a pane for this shim in the options dialog of the settings manager, implement and export

GetOptionsDialogProc. This function must return a dialog proc and resource template to be used

in the property sheet. Customize the dialog resource and procedure for your specific shim.

You are not required to implement an options pane. You can also implement this in another

fashion (apart from the options panel).

ParseCommand.c

To add a custom command to Platform Builder’s CE Target Control, implement and export the

ParseCommand function.

QueryShimInfo.c

The function QueryShimInfo is a required entry point of a shim dll. Do not change anything in

this file; instead, customize ShimInfo.rc.

RemoteUI.c

Get/Set/FreeShimSettings are not required entry points for a shim dll. Implement these only if

you want to send application-specific run-time settings to the device.

ShimInfo.rc

Customize this file with strings that describe your shim. The friendly name will be displayed in

the right pane of the settings manager, and the description will be displayed in the lower pane.

Step 5: Compilation

If the build window is properly set up and the folder is present in the write place (where the

header are accessible, ideal being: private>test>tools>shim>shims>myshim), building should

come out smooth. If there are compilations errors in the c file probably our code is incorrect. You

21

can modify the code by opening the saved file in the UI or directly using the C file whose

changes get lost once you open a FFI '.fib' file.

Figure 12 Generated C File

Figure 13 Compilation of the file

22

Step 6: Execution

Shim execution is the easiest step of them all. Copy the shim in the appropriate folder in the

device, run appverifier and then through the command line (Target Window in case of devices)

type:

appverif -m <module to be tested(not the dll> -s <shim to be applied>

In mobiles you can also create a link file to use. Or can write

<no of legal characters following the #>#appverif -m <module to be tested(not the dll> -s
<shim to be applied>

Alternatively, a shim cam be applied to all calling functions as:

s appverif -m {all} -s <shim .dll>

To remove the applied shim use:

appverif -c

This removes the application of the shim.

You can change the probabilities dynamically - i.e. even when the application is under execution.

All the probabilities are stored in the registry as under

HKLM>Software>Microsoft>ApplicationVerifier>FunctionFaultInjector>[dllname]>[function

name]

You can delete the above value to reset to the probabilities you had specified in the shim.

You can check whether the shim you have applied is actually applied by going to:

HKLM>Software>Shimgen>[module to be tested]>[applied shim]

Figure 14 Shell Prompt Loading

23

Figure 15 Values at registry

Step 7: Maintenance

Figure 16 Loaded shim at registry

The maintenance refers to changing the values of the probabilities, the functions etc. A fast

method of changing the probabilities is as discussed in Execution earlier. But generally you

24

might want to go back to the fault specification form to add stuff or remove it. This can be done

by the use of the saved Fault Injection Backup (.fib) files. Go to the fault injection tool and open

then via the file menu. You can modify as you wish and rebuild. You can also add/remove

functions at your will. Just remember that after compilation when you reuse the stuff you have

made, you'll have to clean up the registry from the probabilities set, without which those

probabilities will continue to be used. Not that you do not need to remove shim application to

paste new. You can paste a new shim in place of the original one even when it was being

applied. The application verifier will automatically shift to the new shim, although you will have

to clean up th registry for the new probabilities to apply.

UI Details

1. Shimgen UI

Figure 17 Shimgen UI

25

Menus

File

New: Create a shim project.

Open: Open an existing shim project (.fib)

Save: Save the existing project.

Exit: Terminate the application.

Controls:

Box Original Dll: Contains the location of the dll to be shimmed.

Box Shim Dll: Contains the location where the shimmed dlls C file will be located.

Box Api Filter: You can use the API filter to search the functions.

Box Exported Apis: Contains list of available functions in the dll.

Box Shimmed Apis: Contains list of functions to be shimmed.

Add: Adds the selected function/functions in To Be Shimmed list.

Remove: Removes the selected function/functions from the To Be Shimmed list

Add All: Add all the functions in the list to be shimmed.

Remove All: Remove all the functions from the list of those to be shimmed.

Imported by...: Helps to minimize function list to only those imported by a dll or exe.

Generate Blank Shim and Close: Act as shimgen and close with a blank shim.

Fill Function Details: Go to the fault specifications form

26

2. Fault Specification UI

27

Menus

File

Build: Build the current Project that is filling in the code into the C file that has to be compiled.

Save: Save the current document and all its information.

Save As: Save As a new document.

Exit: Terminate the application.

Navigation

Previous: Navigate to the previous function that has to be shimmed.

Next: Navigate to the next function that has to be shimmed.

Edit Function List: Go back to the main form where you can edit the list of functions.

Goto Unfilled: Go to the next unfilled function in the list.

Controls:

Alternate Return Value: Specify the alternate return value here.

Stub Function: Specify the stub function here.

Alternate Parameters: Specify the function with alternate parameters here.

Modify Result: Specify the modify result function here.

Included Headers: Add the headers for the above that are not a part of the headers added in

other functions.

Previous: Navigate to the previous function/Edit Function List if at the first one.

Save and Exit: Save the current project and exit.

Next: Navigate to the next function in the list/Build and Finish – Generate code into the C file

and exit.

28

TESTING

� Unit testing was done for each component as it was being made.

� Use of string, Boolean and integer type as well as the advanced DWORD type functions were
tested.

� The generate file was tested by the visual studio syntax checker and many of non
standard statements were removed.

� The entire code was tested manually by the Team as well as on the live environment as a
Beta test on the day of its first demo.

� System testing was carried out along with the check of the memory leaks with the
Application Verifier itself.

� The end users of the software, the testing team carried out automated testing through
various available tools.

29

RESULTS, CONCLUSIONS AND FUTURE SCOPE

The produced tool was found useful enough to be integrated into the system to be used

whenever the need arises. Though there could be some features that can be added in the future

versions/releases of the project:

� Inclusion of mangled function names and C++ functions with dlls that do not have

extern ‘C’.

� Ability to produce shims outside the build window and development of a build
environment through a Visual Studio Project file.

� Addition of functionality to call functions within the same dll.

� Extension to produce a .CPP/.CS file instead of .C for more features and
functions.

� Building in some standard test cases and integrated drop down selection from
within the tool rather than filling them up manually.

� Integration into the Application Verifier UI for removal of the need of the build
window and addition of ability to work directly from the device.

30

REFERENCES

1. Application Verifier Documentation.

2. Application Verifier Discussions group and posts.

3. MSDN article on AppVerifeir: http://msdn.microsoft.com/en-us/library/aa480483.aspx

4. Internal documentation on Application verifier.

5. Books on C# at Safari Books Online: www.safari.oreilly.com/9780596514822

6. Books on WinCE programming from the internal help files and tutorials, along with

many of the MSTE courses.

